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SUMMARY

A directed BIB design DB (k, A, v) is a BIB design B &, 2\, v) in
which each ordered pair of treatments occurs together in exactly A blocks.
A nested directed BIB design NDB(k,A5v) of form Il, (nj“, )\n)i“,
2<n<k—1,is a DB (k, A; v) wherg each block contains Tn in jn mutually
disjoint sub-blocks, in jn of which being partitioned into in mutually disjoint
families of jn sub-blocks of size n, the jn sub-blocks of size n belonging
to one distinguished system which forms the collection of blocks of a
DB (n, Aq; v). It is shown that the necessary conditions for the existence
of such designs with block size 3 or 4 are also sufficient except possibly
for an NDB (4, 2; 10) of form (3, 1)".

Key words : BIB design, Directed BIB design, Nested BIB design,
Nested directed BIB design, Nested directed GD design, PBD-closed set.

1. Introduction

A balanced incomplete block (BIB) design B (k, A; v) is a pair (¥, B) where
7is a set of v treatments, B is a collection of k-subsets, called blocks, of
%, such that every pair of distinct treatments of 9 occurs in exactly A blocks
of B.-

A directed BIB design DB (k, A; v) is a B (k, 2); v ) in which the blocks
are regarded as ordered k-tuples and in which each ordered pair of distinct
treatments occurs in exactly A blocks. A pair {a,b } is said to occur in a block
if a is written to the left of b. Such a design is a block design on a directed
graph. It may also be regarded as a generalization of crossover designs (see
Street and Wilson [12]).

Hung and Mendelsohn [4] first introduced the concept of directed BIB
designs. These designs were further discussed by Seberry and Skillicorn [9],
Street and Seberry [11] and Street and Wilson [12). They showed that the
necessary conditions for the existence of a DB (k, A; v) are also sufficient for
k=3,4 and 5.
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On the other hand, Federer [3] and Preece (8] introduced the concepts
of pested BIB designs in different ways for those statistical situations where
there are more sources of variation than can be eliminated by ordinary block
designs. These designs were further investigated by Colbourn and Colbourn
[2], Stinson [10] and others. Recently, these concepts were unified by Kageyama.
and Miao [6], as follows.

A nested BIB design NB(,A;v) of form I (o, Xn)in ,
2<n<k-1,is a B(kAv)(%, B where each block contains T
mutually -disjoint sub blocks, i J, of which being partitioned into i, mutually
disjoint families of J, sub-blocks of size n, the J, sub-blocks of size n belonging
to one distinguished system B (),1< /(< i, such that (%, B ()) forms a
B (n,A;v) for each integer n with i1

Together with some results obtained by others, Kegeyama and Miao ([5],
[7]) showed that the necessary conditions for the existence of an
NB (k, A; v) of any possible form are also sufficient for k =3, 4 and 5.

On account of all of these observations the natural and direct generalization
is the existence problem of nested directed BIB designs, where the concept
of nested directed BIB designs can be defined in the following way.

A nested directed BIB design NDB (k,A;v) of form IT_(wh,A )k,

2<n<k-1,is an NB (k, 2A; v) of form II, (%, 24 )», 2<n <k~ 1, in which

the blocks and the sub-blocks are regarded as ordered k- -tuples and n-tuples
and in which each ordered pair of distinct treatments occurs in exactly A blocks
and A sub-blocks of size n for each integer n with i1

Nested directed BIB designs form a useful class of experimental designs
for statistical situations where there are more sources of variability and one
source is nested within the other.

By the usual counting arguments for nested BIB designs and the fact that
a DB (k,A;v) is in fact a B (k, 24; v), we can obtain the following.

Theorem 1.1. The necessary conditions for the existence of an
NDB (k, A; v) of form IT (s, A ). are that

Ay

n(-1)j,°

2hv(v-1)=0modk (k — 1), 20, (v-1)=0mod (n—1)

A=k(k-1) 24(v=1) = Omod (k1)

s
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2, v(v-1)=0modn (n-1)
for all integers n with i -> 1.

By using a recursive construction of Wilson type, some direct constructions
by difference techniques, and other special constructions, we shall prove in
this paper that the necessary conditions as described in Theorem 1.1 are also
sufficient for the existence of an NDB (k, A; v) of any possible form when
k=3 and 4 with at most one possible exception of an NDB (4,2;10) of form

3, DL

2. A Recursive Construction

We here describe a recursive construction for nested directed group
divisible designs. Intermediate designs will be used. Some definitions are now
given.

A group divisible (GD) design GD (K, A, M:; V) is a triple (¥, G, B) where
Vis a set of v treatments, G and B are collections of some subsets of ¥, called
groups and blocks, respectively, such_that -

() IGleM for every Ge g, where G forms a partition of ¥/,

(i) /Bl e KforeveryB € B,

(iii) 1GAB1<1foreveryG e GandeveryB € B,and

(iv) every pair of treatments { x,y ), where x and y belong to distinct groups,
is contained in exactly A blocks of B.

The type of a GD design (%, G, B) is the multiset {|Gl: Ge G}. An
“exponential” notation is usually ‘used to describe types : a type
gh g - gl denotes v, occurrences of g, 1 <ism. '

A directed GD design DGD(K,A,M;v) of type T is a
GD (K, 2\, M; v) of the same type T in which each ordered pair of treatments
formed from different groups occurs in exactly A blocks.

A nested directed GD design NDGD (k, A, M; v) (¥, G, B) of type T and
offormIIn(an,kn)in, 2<n<k-1,isaDGD({k } A, M;v)of type T where
each block has I_i_ j, mutually disjoint sub-blocks, i_j, of which being
partitioned into i mutually disjoint families of j_sub-blocks of size n, the j,

sub-blocks of size n belonging to one distinguished system B, (h,1<(<i,such
that (%, G, B, () forms a DGD ({n },A,M;v.) of type T for each integer
n with i 21 and each integer { with 1</<i.
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Note that a BIB design B (k, A; v) is 2 GD ({k }, A, {1 }; v) of type 1",
a directed BIB design DB (k, A; v) is 2 DGD ({k}, A, {1}; v) of type 1Y, and
a nested directed .BIB design NDB(k,A:v) of form F is an
NDGD (k, A, {1}; v) of type 1V and of form F.

For further discussion we need a well-known construction for GD designs
due to Wilson [13).

Theorem 2.1. Let (¥, G, B) be a GD design with index A. Further let
©: VoAU{0)be a weight function where A is the set of all positive
integers. For each B € 3B, suppose there exists a
GD(K,X’,(w(x):xeB),ExeBw(x)) of type {w(x):x € B) (stns(x)

{S(x): x € B), B(B)), where SE)={x,,..., Xy} for every x € 7. Then
there exists a GD(K,M',{Z _,0(x):GegG}; L .,0) of type
(Z,g0):Geg) (U, ,SK), {U, _SK):Ge G)Uy.,B(B))

As a variation, we have the following;

Theorem 2.2. Let (¥, G, B) be a GD design with index A. Further let
0 : Y —— AU {0} be a weight function. For each B e B, suppose there exists

a. DGD (K, ), {w(x):x € B }; L 0Xx) of type
{0(x):x € B} (U, g S(x), {S(x): x e B}, B(B)), where S(x)={ Xps eens Xigy
for every xe V. Then there exists a
DGD (K, AV, {Z,  c0(x):GeG }; I, ¢ y0(x) of type

Z c0x):Geg) v, ,S(x), (Ve S®):Ge g} uy . B(B)).
This theorem can be used to give the present recursive construction for
nested directed GD designs.

Theorem 2.3. Let (7, G, B be a GD design with index A. Further let
© : VY > NuU{0) be a weight function. For each B € 3, suppose there exists
an NDGD (k, )", {@(x):x e BL X, _, @ (x)) of type {® (x):x € B} and of

form I (n b, kn)in, (U, g SX), {S(x):xeB ) B(B)), where
S)={x,....x,n} for every xe% Then there exists an
NDGD (k, AV, {Z _,0(x):GeG); £ _,0(K)) of type
{ Zx. ccW®):Geg) and of form T, (o, kkn)in,
(U, e S {U,  SM:GeG), Uy, ,B®B)). '

As an immediate consequence,; “We can obtain the following structural
property of nested directed BIB desngns which all be utilized later A pairwise
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balanced (PB) design B (K,A;v) is a GD (K, A, {1}; v) of type 1'. A set K
of positive integers is said to be PBD-closed if K=B (X), where
B (K)={v:aB (K, 1; v) exists }. :

Corollary 2.4. Let NDB (k, A, F)={v:an NDB (k, A; v) of form F exists }.
Then the NDB (k, A, F) is a PBD-closed set.

Proof. For convenience of notation, let NDB denote the
NDB (k, A,F). Obviously, NDBc B(NDB). We need only to show
B(NDB)cCNDB. ' Let ve B (NDB), ie.,aB (NDB,1;v) exists. Then
Theorem 2.3 with o (x)=1 for each treatment x shows that v e NDB, which
completes the proof.

3. Existence of NDB (3, A; v)’s

Now we prove the existence of an NB (3, A; v) in general. Note that only,

the case when the form is (2, )\.l)1 needs to be investigated. First the case
A, =1 is considered, which necessarily implies A =3.

Lemma 3.]. There exists. an NDB (3,3;v) of form 2, fof
v=3,4,5,6,7,8.

Proof. These designs can be constructed as follows. Here the treatments
underlined with “_* form the sub-blocks.

(1) NDB(3, 3;3) of form @' V=2,
B={(1,0,2), (1,0,2), (1,0,2) 2,0, 1), 2,0, 1), 2,0, D }.

(2) NDB(@3,3;4) of form Q,n': V=17,
B={(0,2,1), (0,2,1), (0,2,1)mod 4 }.

(3) NDB(3,3;5) of form 2,10 V=12,
B={(0,1,2), (0,2,4),(0,3,1),(0,4,3)mod 5 }.

(4 NDB(3, 3;6) of form @1 V=Z,U{},
B={(0,,4),(0,,4),(0,,4,(0,1,3),0,1,3),(0,1,3)mod 5 }

(5) NDB@(3,3;7) of ~ form Q' V=12,
B8={(0,1,3).(0.1,3),(0,1,3),(0,6, 4,0, 6,4),(0,6,4)mod 7 }.

(6) NDB(3,3;8) of form @n': V=2,

8=1{041, 042, 043, 01D ©21, 0523,
(0,2,5)mod 8 }.
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Theorem 3.2. There exists an NDB(3,3; v) of form (2,1)' whenever
v2>3, :

Proof. 1t is already seen that NDB(3,3; v) of form (2,1)! for
v=3,4,56,7and8. Hence assume v=9. Now let v=3m,3m+1 or
3m+2 for m=3. When m=2n-1, define L(i,j)=(i+j)/2, where
iLjeZ, ;. When m=2n, define LGj)=>G0+j)/2, if j#i+l1,
L@,i+1)=c, L(,)=Q2i+1)2,L(«0,j)=(2j—1)2 and L (0, )= o,
where i,jeZ, . Now further let ¥=XxZ, where X =Z, _, if
IXI=2n-1 and X=2Z, | U{w) if | X 1=2n. Then a collection B of blocks
is formed as follows. For xe X and ie Z, write (x, i) as x;. Let
a,beX,a#b. Add to B three blocks (3,L(@b), by
(3,L(a,b),,,b) and (a,L @ Db),, b)) foreachie Z,. To complete B to
be an NDB (3, 3; 3m) of form (2, 1)}, on each {a} xZ, for a e X, place the
blocks (and thus the sub-blocks) of an NDB(3,3; 3) of form (2, 1)'. To obtain
instead an NDB (3,3; 3m + 1) of form (2, 1)', add one further treatment «. Then
for ae X, on ({a}XxZ,) U (=}, place the blocks (and thus the sub-blocks)

of an NDB(3,3; 4) of form (2,1)!. To construct an NDB(3,3: 3m + 2), add
two further treatments «, and «,. For a single treatment x e X, place the blocks

(and thus the sub-blocks) of an NDB(@3,3; 5) of form (2,1)' on
({x}xZ)u {e0 =0, }. For all other treatments a € X, a # x, include, for each

block (a, b, ) below, three new blocks (a, b,c), (a,b,¢c) and (a, b, c):
(200, a0, a1), (ag, =0, 37, (a1, 22, 09)
(°°1, 32; a]«), (31, 21, a]), (32, ap, °°1)

The resulting design is an NDB(3,3; 3m + 2) of form (2, 1). Here the treatments
underlined with “_” form the sub-blocks.

Theorem 3.3: The necessary and sufficient conditions, for the existence
of an NDB(3,\; v) of form (2, %.2)’ are that A=3X, and v2>3.

Proof. The necessity follows from Theorem 1.1. The sufficiency can be
obtained by repeating every block (and thus every sub-block) of the designs
in Theorem 3.2, )\2 times.

Apart from this simple and direct construction, nested directed BIB designs
can also be easily constructed by using the PBD-closure. A PB design
B({3.4,5,6,8 }, 1; v) exists whenever v > 3 (see, for example, Beth e/ al. [1],
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Section (IX.7.1. b), and an NDB(3,3A,;v) of form Q, )\.Z)1 for
v=3,4,5,6 and 8 exists from Lemma 3.1 by repeating every block (and thus
every sub-block) of the corresponding NDB(@3,3; v) of form (2, 10} A, times.
Then by applying Corollary 2.4, we can present an alternative proof of the
existence of nested directed BIB designs NDB(3, 3A,; v) of form 2, )\2)1:

4. Existence of NDB(4,\;v)'s

We here prove the existence of an NDB(4, A; v). There are four forms,
ie, 2,0, QL) (2% and (3,1,)", to be considered.

4.1 Existence of NDB(4, \; v)'s of forms (2, }\.2)1 and (2, )\1)2

We start with an NDB(4, A; v) of form (2, )\2)2, since its existence implies
immediately the existence of an NB (4, A; v) of form (2, )\2)". :

Theorem 4.1.1. The necessary and sufficient conditions for the existence
of an NDB(4, A; v) of form (2, )\.2)2 are that A=6A, and v24.

Proof. The necessity follows from Theorem 1.1. We consider the
sufficiency. For every v 2> 4, Kageyama and Miao [5] proved the existence of

an NB (4,6,; v) of form (2,}\.2)2. For every block {[a,b],<c,d>} of the
NB(4, 6),; v) of form (2, kz)z, (7, B), where square and angle brackets indicate

two distinguished systems ‘of sub-blocks, define two new blocks
(a,b,c d),(d c,b,a) e B, where the treatments in a block underlined with
. ;na “~~ ” form two distinguished systems of sub-blocks. Then
(¥, ®) is an NDB (4, 6A; v} of form (2, }\1)2. This completes the proof of
the sufficiency. .

As an immediate result, we have the following.

Theorem 4.1.2. The necessary and sufficient conditions for the existence
of an NDB (4,;v) of form (2,1,)' are that A=6X, and v24.

4.2. Existence of NDB (4, \; v)'s of form (2%, 1.)'

Some direct constructions for an NDB(4, 3; v) of form (2%, 1) are first
presented.
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Lemma 4.2.1. Let q= 3 mod 4 be a prime power. Then there exists an
NDB (4, 3; q) of form (22 1).

Proof. Let ¥V=GF(q) and 8= {( 8", 8*™', &' 1), (¢, 0", o"*'*,
61"'), i=0,1, ,t =2, modq)wberet—(q—l)/Ze1sapr1mmve
element of GF(q) and the treatments in any block underlined with “ . and

with “ * form two sub-blocks. Then it follows that (¥, B) is an NDB(4 3;q
of form (%, D

Lemma 4.2.2. There exists an NDB (4,3; v) of form (22, 1) for v=6, 10,
14, 15, 18.

Proof. These designs can be constructed directly as follows. Here the
treatments in a block underlined with “_” and with ,“=” form two sub-blocks.

- (1) NDB(4, 3;6) of form (2%,1)' : ¥ + Z U {0}, B= { (0, 1,3, 2),
0,3,2,2),(=,0,1,4) mod 5}.

() NDB (4, 3; 10) of form (2%, 1) V= zgu<oo) B= {(0 139,
0.41,3,0.53,2,)(=04,5), 0,74 =) mod9 ).

(3) NDB (4, 3; 14) of form (2%, 1)": ¥'= z13 U {=}, 8={(0,1,3,9),
9.3.1,0,0,1,3,9.09,3,1,0,(1,0,3,9,9,3,1,%),(=,5,2,6
modI3} ~ 7 _ - T T

(49 NDB (4, 3; 15) of form (2%,1)": V=2,xZ,, B= {((1,1).(1,4) (2,2),
2,3),(2,3), 2,2, (1,4, 4, 1), ((1 2),(1,3), 2, 1),(2,4), (2,4,
1), (1,3). (1, 2)), (0,0, 0, D, T, 0), 2,00, (Z,0), 1,0),L,_256,
go, 2), (2, 3), (1), (1,9, (2, 2)) mod ( 3, 5)). »

(5) NDB(4,3; 18) of form (2%,1)' : ¥=Z,, U {), B=
(16,13, 4, 1), 3, 5, 12, 14), (14, 12, 5, 3), (2,8, 9,
(6‘11 16 D, (=,16,15,11), 9,10, 13, ) mod 17 ).

Lemma 4.2.3. There exists an NDB (4, 3; v) of form (2%, 1)' whenever
v=0 or 1 mod 4.

Proof. For each block {{a, b], [c, d]} of an NB (4, 3; v) of form
(2%, 1), (% B), define two new blocks (a, b, ¢, d), (d, ¢, b, a) € B, where
the treatments in a block underlined with “_” and with “ " form two sub-blocks.
Then it follows that (1, B) is an NDB(4,3; v) of form (2%, L. On the other
hand, an NB(4,3; v) of form (22,1)' exists whenever v=0 or 1 mod 4
(see Kegeyama and Miao [5]). This completes the proof.

Lemma 4.2.4. There exists a B({4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15,
18, 19, 23 }, 1;v) whenever v > 4.
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Proof. See, for example, Beth er al. [1], Section (IX.7.1.¢).

Now we can prove the main result of this sub-section.

Theorem 4.2.5. The necessary and sufficient conditions for the existence
of an NDB (4, A;v) of form (2%,1,)" are that A=3), and v24.~

Proof. The necessity follows from Theorem 1.1. For the sufficiency, apply
Corollary 2.4 with Lemma 4.2.4, where an 'NDB (4,3%,;v) of form
%1 for v= 4, 5, 6,7, 8,9,'10, 11, 12, 14, 15, 18, 19 and 23 can be
constructed by repeating every block (and thus every sub-block) of the
corresponding NDB(4,3; v) of form (22,1)! in Lemmas 4.2.1, 42.2 and 4.2.3
A, times. :

4.3. Existence of NDB(4, A; v)'s of form (3, )’

In Kageyama and Miao [5], the authors showed that the necessary and
sufficient conditions for the existence of an NB (4, A;v) of form (3,)»3)l are
that A=2X, and A, (v-1)= 0 mod 6. This result can be utilized to construct

some NDB (4, A; v) of form (3, )\_3)1.

Lemma 4.3.1. There exists an NDB (4, A;v) of form (3,)\-3)1whenever
A=2); and A, (v—1)=0 mod 6.

Proof. For each block {[a,b,c},d} of an NB(4,\;v) of form
(3,k3)‘, (7. B), where f[a, b, c¢] is a sub-block, form two new “blocks

(a,b,c,d),(d,c.b,a) € B. Here the treatments in a block underlined with “_”
form a sub-block. Then it follows that (%, B) is an NDB 4, \; v) of form

G

It can be seen from Theorem 1.1 that the necessary conditions for the
existence of an NDB (4,A;v) of form (3, )»3)l are that A=2A, and
A,(v-1)=0 mod 3. First the case A;=1 is considered, which implies
necessarily A =2.

Lemma 4.3.2. There exists an NDB(4, 2; 4) of form (3, 1)".

Proof, Let V=2, and B={(0,1,2,3), (1.0,3,2),(3,2,1,0), 23,0, )}
where the treatments in a block underlined with “_” form a sub-block. Then
(7, is an NDB(4, 2; 4) of form (3, D".
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Lemma 4.3.3. There exists a B({4, 73,-1; v) whenever v=1 mod 3 and
v#10,19.

Proof. See, for example, Beth ef al. [1], Section (IX.7.1.c).
Thus we' can obtain the following.

-Theorem 4.3.4. There exists an NDB(4, 2; v)-of form (3, 1) whenever
v=1 mod 3 except possibly for v=10.

Proof. By applying Corollary 2.4 with Lemma 4.3.3, where an
NDB(4, 2; 4) and an NDB(4, 2; 7) of form (3, 1)! exist from Lemmas 4.3.1
and 4.3.2, we can show the existence of an NDB(4, 2; v) of form (3, 1! for
every v=1 mod 3 except possibly for v =10, 19. An NDB (4, 2: 19) of form
(3,1)' was already constructed in Lemma 4.3.1.

An immediate result of Lemma 4.3.1 is the following.

Theorem 4.3.5. There exists an NDB(4 4; v) of form (3,2)' whenever
=1 mod 3.

'Now the case A, =3 is considered, which implies necessarily A =6.

Lemma 4.3.6. There exists an NDB(4, 6; v) of form (3, 3) for v = .4,
5,6,7, 8,9, 10, 11, 12, 14, 15, 18, 19, 23.

Proof. An NDB(4, 6; 4) of form (3, 3)' can be obtained by repeating every
block (and thus every sub-block) of an NDB(4, 2; 4) of form (3,1)! (Lemma
4.3.2) three ‘times. Lemma 4.3.1 shows the existence of an NDB(4, 6: v) of
form (3, 3)' for every odd v. The remaining designs can be constructed directly
as the following shows. Here the treatments in a block underlined thh “”
form a sub-block.

(1) NDB(4,6;6)ofform(3,3)': ¥=Z, U {w}, B= {(0,0,3,4),(0,,1,3),
(00013)(04300)(0124)(0243)m0d5) :

(2) NDB(4, 6; 8) of form (3,3)' : V=2, U (=}, B= {0, e, 1,
(00013)(21000)(31000)(0246)(6420)0 ,6,2),
(2,8,3,0) mod7). -0

(3) NDB(4, 6; 10) of form (3,3)' : V= Z, U{w }, B = {(l, 0, «, 2),
(2,,0,1),0,2,3,1),(1,3,,0),0,3,6,8), 8, 6,3,0), 0,2 2,4,6),

(6.4,2,0),(0,4,8,3),(3,8,4,0)mod 9},
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(4 NDB (4, 6; 12) of form (3,3)' : V=2, U {=},B={0, =, 1, 2),
2.1,,0), (0,,1,3),3,1,2,0),(0,2,4,6),(6,4,2,0),©,3,6,9),
 O8L0.C4BD(EADO50,(105Gmd I
(5) NDB (4, 6; 14) of form (3,3)': ¥ = Z, U {0}, B={0, =, 1,2,
@2,1,%,0),(1,,0,3),3,0,,1),0,24,6), 6,4.2,0,03,6,9,
(3.8.3,0).(0,4,8,12),(12,§,4,0),(0,5,10,2),(,10,5,0), 0,6.12,5)
G.126,00mod13). 7 -t T T T
(6) NDB (4, 6; 18) of form (3,3)' : V= Z; U{ ), B={(0,»,1,2),

(2,1,%,0),(1,%,0,3),3,0,,1),(0,2, 4, 6), (6,4,2,0),(0,3,6,9,

©.%. 3.0), 0, 4 8,12), (12,8, 4, 0),(0, 5, 10, T5), (15,10, 5, 0),
©.8.12,1), (I, 12,5,0), 0, T, 14,47, (4,1477,0),10,8,16, 7, (,16,3, )
mod i7y T
Theorem 4.3.7. There exists an NDB(4,' 6: v) of form (3,3)1 whenever
v24.
Proof. Apply Corollary 2.4 with Lemmas 42.4. and 4.3.6.
The following result can be easily proved.
Theorem 4.3.8. The necessary conditions for the existence of an
NDB(4, ; v) of form (3, A,)", i.e., A=2A, and A, (v—1)=0 mod 3, are also
sufficient except possibly for an NDB(4, 2; 10) of form (3, 1)".

Proof. The necessity follows from Theorem 1.1.. For the sufficiency, note that
if (¥ ®) is an NDB(4, ; v) of form (3, ;)" and (%, B") isan NDB (4, f; v) of form
(3,8, then (V.8 O B")isanNDB (4, o+ f; v)of form (3, &, + B,)'. By using
Theorems 4.3.4, 4.3.5 and 4.3.7, we can obtain the required designs.

5. Conclusion
In this paper the following main existence result is established.

Theorem 5.1. The necessary conditions for the existence of an
NDB (k, A; v ) of any possible form are also sufficient for k=3 and 4 except

possibly for an NDB(4, 2; 10) of form (3, 1)'.
While it is probably true that the only possible exception mentioned above

is not really exception at all, after a great deal of valiant effort, the authors
reluctantly leave this case for another day.
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